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1. INTRODUCTION

In [8], H. Yamabe established the following “‘simultaneous approximation
and interpolation” theorem, which generalized a result of Walsh ([6]; p. 310)
(cf. also [1]), and is related to a theorem of Helly in the theory of moments
(cf. [2]; pp. 86-87):

THEOREM (Yamabe). Let M be a dense convex subset of the real normed
linear space X, and let x,\*, ..., x,* € X*. Then for each x € X, and each € > 0,
there exists ay € M such that | x — y| < € and x,*(y) = x*(x) (i = 1,...,m).

Wolibner {7], in essence, proved that Yamabe’s theorem could be sharpened
in the particular case where X'= C([a,b]), M =& = the set of polyncmials,
and where the x;* are “point evaluations”. Indeed, from the results of [7], one
can readily deduce the following

THEOREM (Wolibner). Lef a<t; <t, <...<t,< b, and let P be the set of
polynomials. Then for each x € C([a,b]), and each ¢ >0, there exists ape P
such that | x — pl| < e, p(t}) = x(t;) (i=1,...,n), and | p| = | x].

Motivated by Wolibner’s theorem, we consider the following more
general problem. Let M be a dense subspace of the normed linear space X,
and let {x;%,...,x,*} be a finite subset of the dual space X*. The triple
(X, M, {x* ..,x,*}) will be said to have property SAIN (simultancous
approximation and interpolation which is norm-preserving) provided that the
following condition is satisfied:

For each x € X, and each ¢ > 0, there exists a y € M such that

Ix=yl<e x*=x*C) @=1...m, and [y]=]x].
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It is not hard to give examples of triples (X, M, {x,*,...,x,*}) which do not
have property SAIN. On the other hand, for those triples which do have
property SAIN, we have a stronger conclusion that can be gleaned from
Yamabe’s theorem. It is the purpose of this paper to determine necessary and
sufficient conditions in order that a triple have property SAIN. After establish-
ing some useful results of a general nature in §2, we prove (Theorem 3.2) that
if M is a dense subspace of a Hilbert space X, and if x,%,..., x,* € X*, then
(X, M, {x,*,...,x,%}) has property SAIN if and only if each x;* attains its norm
on the unit ball of M. In §4 we consider the case X = C(T), T compact Haus-
dorff. The main result here (Theorem 4.1) is that (C(T), M, {x,*,..,x,*}) has
property SAIN if M is a dense subalgebra (or dense linear sublattice containing
constants), and the x;* are point evaluations. This result contains that of
Wolibner, and represents a strengthening of the Stone-Weierstrass theorem
(Corollary 4.2). Various counterexamples are constructed, which show that
these results cannot be extended very far. In §5, we consider a particular dense
subspace of X =L, for 1 <p < «, and in §6, a particular dense subspace of
X =L,. We also pose a few open problems.

It is worth mentioning here some specific results which are somewhat related
to our problem. We first remark that Wolibner actually showed that if
x(t;.1) # x(2;), then the polynomial p of the conclusion of his theorem can be
chosen to be monotone in each of the intervals [¢;,7,,,]. S. Young [9],
independently, gave an elegant proof of this latter fact. Paszkowski ([4]; p. 8)
dropped the approximation part of the conclusion of Wolibner’s theorem
(i.e., he sought only a polynomial p such that p(z;) = x(¢,) (= 1,...,n), and
[ 2| =x]}), and showed that in this case the degree of the polynomial p which
works is independent of the function x being interpolated, and depends only
on the points #;! Singer [5] extended Yamabe’s theorem to the case where X
is a real linear topological space. Also, in [1] there was given a different proof
of Yamabe’s theorem, where M is a subspace in any (real or complex) linear
topological space. We now observe that the following theorem, which en-
compasses the main results of both [S] and [1], is true.

THEOREM 1.1. Let M be a dense convex subset of the (real or complex) linear
topological space X, and let f,....f, be continuous linear functionals on X.
Then for each x € X, and each neighborhood U of x, there exists a y € M such

thaty e U, and f,(y) = fi(x) (i =1,...,n).

The proof of Theorem 1.1 is exactly the same as in [5]. We recall that the
essential fact used there was the well-known result that if A4 is a dense convex
subset of the real linear topological space X, and Y is a subspace of X having
finite codimension, then M N Y is dense in Y. We need only observe that this
fact is also true in case X is a complex linear topological space. To see this,
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we employ the standard trick of regarding X as a real space, and then note that
if ¥ has (finite) codimension n in the complex space X, then ¥ has (finite)
codimension 27 in the real space X.

We conclude the introduction by reviewing some notation and terminology.
Throughout the paper X will denote a real normed linear space (although some
of our results are valid in complex spaces, as well), X* will denote the dual of
X, 1.e., the Banach space of all continuous linear functionals x* on X, with the
norm [|x*|| = sup {|x*(x)|:|x]| < 1}. The closed unit ball of a normed linear
space Y, denoted S(Y), is the set {y € Y:||y] < 1}. A functional x* € X* is
said to attain its norm on S (X), if there is an element x € §(X) such that x*(x) =
[x*|. By subspace we shall always mean linear subspace. All other notation
and terminology will conform to those in [2].

2. GENERAL RESULTS

LemMA 2.1, Let M be a dense subspace of X, and let I' be a finite-dimensional
subspace of X*. Let x € X, € > 0, and suppose there exisis a y, € M such that
lx —»ll <e x*(y)) =x*(x) for all x* € I, and || y,|| < || x||. Then there exists a
V2 € M such that | x — y,| < €, X*(y,) = x*(x) for all x* € I, and || y,| > | x].

Proof. Let||x — y,| = Aewhere0 < A < 1,andsetz = 2x — y;. Then [ x — z]| =
|y — x| = de, x*(2) =2x*(x) — x*(y;) = x*(x) for all x*el, and |z||=
(2% — 31} = 2|lx]| — | »1|| > | x||. By Yamabe’s theorem, we can choose y, € M
such that x*(y,) = x*(2)(=x*(x)) for all x* € I, and |z — y,|| < min {(1 — AJe,
Izl = [Ix1}. Then

lx =yl <lx—z[+]z =y <+ 1 -De=c¢,
and
12l =y —z+z] =z| —lz— 32l > 2] = (z] = |xI) = |Ix],

which completes the proof.

LevMma2.2. Let X, M,and I'be as in Lemma 2.1. Let x € X, e > 0, and suppose
there exist y,,y, in M such that |x — y,| <e, x*(y;)=x*(x) for all x* T,
and |y, <| x| <|».ll- Then there exists a y € M such that ||x — y| < e, x*(y) =
x*(x) for all x* € I', and || y|| = | x|

Proof. For each A€ [0,1], define y, = Ay, + (1 — A)y;. Then y, e M for
each Ae[0,1], and the function f(A) = y,|| is continuous on [0,1]. Since
SO =|», and f(1) =] y,|, it follows that there is a A, €(0,1) such that
Sa) = [x], 1.e., [ 3ol = |1 x]- Also,

12 = yaoll = [ Ao — 32) + (1 = A)(x — ¥1}]
<Aoflx —yo| A = A)x =y <e.
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Finally, for each x* e I,

X*¥(¥20) = Ao X¥(¥2) + (1 — Ag) X*(¥1) = Ao Xx*(x) + (1 — Ag) x*(x)

= x*(x).
Taking y = y,, completes the proof.

As an immediate consequence of Lemmas 2.1 and 2.2, we obtain

LEMMA 2.3. Let M be a dense subspace of X, and let I be a finite-dimensional
subspace of X*. Let x€ X, ¢>0, and suppose there is a y, € M such that
[x =1 <€ x*(y)) =x*(x) for all x* €T, and || y,\| <|x|. Then there exists
¥y € M such that |x — y|| < €, x*(p) = x*(x) for all x* € I, and | y| = x|

Remark 2.1 Lemma 2.3 can be reworded as follows: (X, M, {x,*,...,x,*})
has property SAIN if and only if for each x € X, and each € > 0, there exists
¥y € M such that |x - y|| <€, x;*(p) = x*(x) for i=1,...,n, and | y|| <|x].

The following is a helpful tool which will be used throughout the sequel.

LEMMA 2.4. Let M be a dense subspace of X, and let x* € X'*, |x*|| = 1. Let
x € X, | x| =1, and suppose that |x*(x)| < 1. Then for each € >0, there exists
¥y € M such that | x — y|| < e, x*(¥) = x*(x), and | y| = | x|.

Proof. 1t suffices to consider the case 0 < x*(x) < 1. Choose x, € X such
that | xo|| < I, and x*(x) < x*(x,). Select any A € (0,1) with 1 — €| x — x| ! < A,
and set x* = Ax + (1 — A)x,. Then |x™|| <Ax| + (1 — V)|x] <1,

X*(xt) = Ax*(x) + (1 — A) x*(xg) > x*(x),
and

Ix = x* | = (@ = D — xp)]| = (1 = Vx — Xo]| < e.

Thus, letting S(z;r) denote the open sphere centered at z, with radius r (i.e.,
the set {w e X:|w —z|| <r}), and H* = {z € X: x*(z) > x*(x)}, we have shown
that the open set

Ut=80;D)NSx;e) N H

is not empty. Similarly, the open set
U =S0;)NSx;e)NH™
is not empty, where H~ = {z € X:x*(z) < x*(x)}. (In fact, the element x~ =

ax + (1 — o) (—x,), where o € (0,1), and 1 — €] x + xo| ™! < «, is in U™.) Since
M is dense, we can choose points y* e MN U*, and y e MN U™. Let
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y €(0,1) be chosen so that the element y = yy™ + (1 — o)y~ satisfies x¥(y) =
x*(x). Clearly, [y < 1, and
[x =yl =llyCe =y + 1 = p)(x —y)|
<ylx=y+E=-px—yil<e

An appeal to Lemma 2.3 completes the proof.

Remark 2.2. The hypothesis |x*(x)] < 1, in Lemma 2.4, is essential. Indeed,
the following example shows that the conclusion of Lemma 2.4 does not hold,
in general, if | x*(x)| = 1. Let X = C([0,1]), and let

M= {xe C([0,1]):x'(3) exists, x'($} = x(0) — x(1)}.
It is not hard to see that M is a dense subspace of C([0, 1]). Define x* on X by
x*(x) = x(3). Then x* € X*, and ||x*| = 1. Let x, € X be defined by xy4(f) = 1
if 0<t<d, and xo(f) =21+ 2 if L <t < 1. Then ||x,] =1, and x*(xg) = L.

Clearly, if y € M, x*(¥) = x*(x,), and || y| = | x,], then y'(3) = 0. In particular,
3(0) = (). It follows that

max {|xo(0) — ¥0)], [xo(1) = HDI} > 3,
and hence |x, — | > 1. Thus, for x = x,, and 0 < e < 4, it is not possible to

find a y € M satisfying the conclusion of Lemma 2.4.

Remark 2.3. Unfortunately, Lemma 2.4 cannot be extended so as fo be
valid if there were more than one norm-one functional x* satisfying |x*(x)| < 1.
In fact, we can even prove somewhat more. Namely,

Proposition 2.1. There is a dense subspace M of 1, functionals x*,y* in I}*
with |x*| = y*| =1, and an element x !, with |x||=1, |x*(x)| <1, and
| ¥*(x)| < 1, having the property that it is not possible to find a y € M such that
7] =x], x*(3) = x*(x), and y*(y) = y*(x).

Proof. As usual, we identify /;* with the sequence space /.. Let

M={y=Gumedeh:Sm =0, =(-L100,.)el,
1
P (LL-bdd. )l and  x=(0,0,01 GG,

M is clearly a subspace of /. To see that M is dense in /,, it suffices to show that
each of the unit vectors

€, = (811> 02> - - +) (k=1,2,...)
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can be approximated arbitrarily well by elements of M (since span {e;,e,,...}
is dense in /,). Fix an index k, and let ¢ > 0. Choose n>k so that n™! < e.
Then the vector
y=00,...,0,1,0,...,0,—1"1,0,..)
;—f__._} L__.N__—J
k—1 nk—k—1

is in M, and |e,—y| =n"! <e Thus, M is dense. Now, |x*||=|y*| =1,
xely, and |x|| = 27 )= 1. Also, x*(x) =0, and y*(x) = >¢ (1)1 =1. Let
¥y=017,... €M, and suppose that x*(y)=x*(x), y*(»)=y*(x), and
| ¥l = x| = 1. It follows that

m—12+n3=0, —~m+nz—%n3+%;m=%,

and >7 |9,] = 1. Solving for 7, from the first equation, and substituting into
the second, we deduce that >¥ %, = 1. This, along with the third equation,
implies that 9, = 5, = 7; =0,and n, > Oforalln. Buty € M, sothat > ay, =0,
and, hence, n, = 0 for all n, i.e., y = 0, which is a contradiction. This completes
the proof.

By examining the steps of the proof, we observe that the proposition is valid
for any dense subspace M of /; which does not contain any positive elements,
i.e., nonzero elements y = (n;,7,,...) such that 5, = 0 for all n.

The following two theorems follow rather easily from Lemma 2.4.

THEOREM 2.1. Let M be a dense subspace of X,x* € X*, and suppose that
either x* does not attain its norm on S(X), or x* attains its norm on S(X) only
at points in M. Then (X, M, {x*}) has property SAIN.

Proof. Letx € X, and e > 0. We can assume that | x*| =|\x| =1, and x ¢ M.
By hypothesis, |x*(x)| <1. By Lemma 2.4, there exists a y € M such that
|x — ] < € x*(y) = x*(x), and | y|| = || x||. This completes the proof.

Remark 2.4. The converse of Theorem 2.1 is false. For example, as a conse-
quence of Theorem 4.1 below, it follows that there are triples (X, M, {x*}) with
property SAIN, and such that x* attains its norm at points in S(M), as well
as at points in S(X) ~ M.

THEOREM 2.2. Let M be a dense subspace of the strictly convex normed linear
space X, let x* € X*, and suppose that x* attains its norm on S(M). Then
(X, M, {x*}) has property SAIN.

Proof. By strict convexity, x* must attain its norm at a unique point of M,
so that Theorem 2.1 applies.
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Remark 2.5. The hypothesis that X be strictly convex, in Theorem 2.2,

cannot be dropped. In fact, the same example as in Remark 2.2 establishes
this fact.

THEOREM 2.3. Let M be a dense subspace of the normed linear space X, and
let x,*,....x,.* € X*. A necessary condition that (X,M,{x,*,...,x,*}) have
property SAIN is that each x;* either attains its norm on S(M), or does not
attain itsnormon S(X) at all.

Proof. If some x;* attained its norm at a point x € S(X) ~ M, but not on
S(M), then we would have, in particular, that x;*(y) < |[x;*|| = x,*(x) for all
y € S(M). This contradicts property SAIN, and completes the proof.

In the case of a strictly convex space, and one interpolation condition, i.e.,
n =1, the necessary condition of Theorem 2.3 is also sufficient, as a conse-
guence of Theorem 2.2. Thus we have the following.

COROLLARY 2.1. Let M be a dense subspace of the strictly convex normed linear
space X, and let x* € X*. Then (X, M,{x*}) has property SAIN if and only if
either x* attains its norm on S(M), or x* does not attain its norm on S{(X) at ail.

In a reflexive Banach space X, it is well known that every x* e X'* attains its
norm on S(X). (Indeed, this property characterizes reflexive Banach spaces
[3]; Theorem 5].) Thus we immediately obtain the following corollary of
Theorem 2.3, which we state for future reference.

COROLLARY 2.2. Let M be a dense subspace of the reflexive Banach space X,
and let x*,...,x,* € X*. A necessary condition that (X, M, {x*,...,x,*}) have
property SAIN is that each x;* attains its norm on S(M).

Combining Corollaries 2.1 and 2.2, we deduce

COROLLARY 2.3. Let M be a dense subspace of the strictly convex reflexive
Banach space X, and let x* € X*. Then (X, M, {x*}) has property SAIN if and
only if x* attains its norm on S(M).

Remark 2.6. It is an interesting open question whether the necessary condi-
tion of Corollary 2.2 is also sufficient in the case # > 1. (As we shall see in §3,
the answer is in the affirmative if X is a Hilbert space. Also, we shall see in §5
that the answer is affirmative for a certain subspace M of L, (1 <p < «})
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3. THE HILBERT SPACE CASE

In the case where X is a Hilbert space, we can give a complete characterization
of those triples having property SAIN (Theorem 3.2). It can be easily deduced
from

THEOREM 3.1. Let M be a dense subspace of the Hilbert space X, and let
VisersVn € M. Then for each x € X, and each € > 0, there exists y € M such that

“x—"y“ <€, <y9yz> = <x=yi> (l= 15"'9”)9 and “y” = ”x”

Proof. Ttisno loss of generality to assume that the y; are linearly independent.
By replacing the y; by an orthonormal basis for ¥ = span {yi,...,y,}, we can,
in fact, assume that the y; are orthonormal. Let x € X, and e> 0. Since
X=YDYL ([2]; p. 249), we can write x = > «;; -+ 2z, where o; = {x,p;>
and ze Y. Since Y. has finite codimension, M N Y- is dense in ¥+ (cf.
the remark following Theorem 1.1). Thus we can choose w e M N ¥ so that
lz—w| <e and |w| <|z||. Then, setting y=>1%a'y; +w, we have that
yeM, Hy —.XI” = ”Z i W” <& (Pyy=o0=<xyy ({=1,...,n), and ”yH2=
127 cuil® + W] < |2} awyi® + z[*=]x|*>. An appeal to Lemma 2.3
completes the proof.

THEOREM 3.2. Let M be a dense subspace of the Hilbert space X, and let
X%, X F € X*. Then (X, M, {x,*,...,x,*}) has property SAIN if and only if
each x;* attains its norm on S(M).

Proof. The necessity is a consequence of Corollary 2.2. To prove the
sufficiency, we first observe that corresponding to each x;*, there is a unique
¥: € X so that x;*(x) = <{x,y;> for all xe X, and || y;|| =|x*| (cf., e.g., [2];
p. 249). Letting m; € S(M) denote the point where x;* attains its norm, we have
that [x*|=x*(m;) (i=1,...,n), ie. |y =<m;,y> (=1,...,n). By the
condition for equality in Schwarz’s inequality ([2]; p. 248), we deduce that
vi=l|yi|m,e M (i=1,...,n). An application of Theorem 3.1 now completes
the proof.

4. THE CASE OF SPACES OF TypPE C(T)

Throughout this section, T will denote a compact Hausdorff space, and
C(T) the real-valued continuous functions on T, endowed with the supremum
norm. If £ € T, we define §, to be the linear functional “evaluation at 1, i.e.,
8,(x) = x(¢) for all x e C(T).

LEMMA 4.1. Let M be a dense subspace of C(T), and let t,,...,t,€T. Let
x e C(T) satisfy |x(t)| <||x| ((=1,....n). Then for each ¢ >0 there exists a
y € M such that | x — y| < &, y(t;) = x(t;) (i = 1,...,n), and | y| = || x].
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Proof. We may assume that | x| = 1. By Lemma 2.3, it suffices to show that
there is a y € M such that |x — y| <€, y(t;)=x(t) (i=1,...,n), and |y| < 1.
We proceed by induction on n. For #n = 1, the result is a consequence of Lemma
2.4. Now suppose the conclusion holds for N or fewer points #;, and let
ts.. iy € T. By hypothesis, there exists a y, € M such that |x —y] <e,
1@y =x@)iE=1,..,N),and||y,| < 1. Let c = x{ty. ;). Iy, (tys1) = ¢, We are
done. Suppose, then, that y,(fy,,) # ¢. We can assume that y,(¢y.) > ¢, since
the other case is similar. Let €; = min {e,1 — |¢|}. Let ¥ be an (open)neighbor-
hood of #y,; such that 7, ¢ Vfori=1,...,N, and |x(f) — c| < & /2if te V. By
Urysohn’s lemma, we can choose 2 € C(T') such that Aty ) = —¢;/2, i(t) =0
ift¢V,and — ¢, /2<h(t)y<Oforall t € T. Then |x + 4| =1, (x + 1)) = x (&)
(i=1,...,N), and (x + h)(ty41) = ¢ — €/2. Choose y, € M such that |y, —
4+ B < €1f2, 9200 = (x + BY(t) = x(1) (= ..., N),and |y < | + b = 1.
Then y,(ty.;) < ¢, and

In—x<ly—G+ni+li <a2+al2=ca<e

Let y be the convex combination of y, and y, such that y(¢5.;) =c. Then
vyeM, |x—y|<e yt)y=x() (i=1,...N+1), and |y} <1. This com-
pletes the induction and the proof.

Remark 4.1. From Lemma 4.1, it is tempting to conclude that
(C(T), M, {8,,,...,5,,}) has property SAIN. However, we recall that in Remark
2.2 we gave an example of a dense subspace M of C([0,1]) which contained
constants, but such that (C([0,1]), M, 9,,,) did not have property SAIN.

On the other hand, if M is a dense subalgebra of C(T), then
(C(T), M, {5;,,...,8,)) does have property SAIN.

THEOREM 4.1. Let A be a dense subalgebra of C(T), and let t,,...,t, € T. Then
(C(1),4,4{5,,...,8:.}) has property SAIN.
Proof. We need the following

Lemma 4.2. Let A and {t;} be as in the theorem. For each € > 0, there exists
an element e € A such that |e — 1| < e, e(t)=10G=1,...,n), and e < 1.

Proof of Lemma. By Yamabe’s theorem we can choose a y € 4 such that
ly =1 <Veand (1) =1(i=1,...,n). Then | y* — 2y + 1| < e. Lete =2y —
2. Theneed,|le—1| <e and e(t;)=1(i=1,...,n). Also, y*—2y+1 >0 implies
that e = 2y — y* < 1. This proves the lemma.

To prove the theorem, let x € C(T), and € > 0. We can assume that [x| = 1
and ¢ < 1. By Lemma 2.3, it suffices to show the existence of a y € 4 such that
Ix =yl <e ¥(t)=x(t) (i=1,...,n), and | y| < 1. We proceed by induction
onn Forn=1, let ¢ = x(z,).
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Casel. |c| <1.

This is just a special case of Lemma 4.1.

Case 2. |c| = 1.

We may assume that ¢=1. Choose ¢, >0 so that 2V2¢, + 2 < ¢/4.
Let z(f) = V1 — x(f). By Yamabe’s theorem, we can choose y, € 4 so that
| ¥1 —z|| < €1, and y,(¢;) = z(t;) = 0. Then

[y =22 <(nl +zDIy — 2l < (V2 + &1 + V)¢ @.1n
=2V2¢, + €2 < ¢/4.
Let A=2(2 + ¢/2)"!. Then
1Ay:? = 22| <Al yi® — 22 + (1 = )] 22
< /4 +2¢/4 = 3e/d.

Choose €, >0 so that €, <2 —2(2 + ¢/4)(2+ €/2)"!. By Lemma 4.1, there
exists ec A such that |e — 1| < min {¢/4,¢,}, e(t;) =1, and e< 1. Set y=
e~ Ay % Then y € 4, and 3(¢,) = 1 = x(z,). Also,

ly~xl=le—a?—1+2% <fle—1] +|2* — Wy’ < efd + 3[4 = e.

Moreover, ||x|| =1 implies 0 <1 —x<2 (i.e.,, 0<2z?<2), and so 0<y,2<
2 + ¢/4, from eq. (4.1). Then

0< 2 <22+ 2712 + efd) <2 — e,
Finally,
—l<—-l4+-1+e)<e—Ayl<e<].

In particular, || || < 1. This proves the theorem, in case n = 1.

Now suppose the conclusion holds for N or fewer points 7, and let
ti,...otyys € T. Let ¢ = X(ty4,). By hypothesis, there exists a y; € 4 such that
%~ 31l < & yi(t) =x(t;) ((=1,...,N), and | y,]| < 1. If pi(tyy,) = ¢, we are
done. Suppose, then, that y,(¢y.) # c. We assume that y,(¢y,) > ¢, since the
other case is similar. Since |y <1, -1 <e<1.

Casel. -1 <c<l.

Proceeding exactly as in the proof of Lemma 4.1, we deduce the existence
ofaye A suchthat jx —y| <e y(#)=x() (=1,....,N+1),and | y] < 1.

Case2.c=—1.

Let z(f) = V/1 + x(¢). Then z(ty.,) = 0. By case 1, we can find a y, € 4 such
that ||y, —z[| < €/4V2, yi(8) = 2(z;) (i=1,....N+1), and ||y,] <]z] < V2.
In particular,

Iy =+ x| =]y> =22 <nll + 12Dl y: ~ 2|
<2V2 €/dV2 = ¢[2,



SIMULTANEOUS APPROXIMATION AND INTERPOLATION 365

and 0 < y,;? < 2. By Lemma 4.1, we can choose an e € 4 so that |e — 1] < ¢/8,
et)=1(=1..,N+1),and e<1. Let y=ey,2—e Then ye 4,

[x =] =[x+1-p>+ (- D{1-e)
<x+ 1=y 2 +(ly?] + DIL —¢f
< €24+ 3e/8 < ¢,

and y(t;) = x(t;) i=1,....N+1). Now 0 < y,2<2,so that -1 < y,2 -1 < 1.
Since |le — 1] < ¢/8, and € < 1, we have e(f) > 0 for all £ € T. Thus,

~l<——e<e(y?~<e<l,

and so || y| =[e(y,* — D] < L.
This completes the induction and hence the proof.

We can strengthen the conclusion of Theorem 4.1 for those functions in
C(T) which are nonnegative.

COROLLARY 4.1. Let A be a dense subalgebra of C(T), and let t,,...,t,€T.
Then for each nonnegative function x € C(T), and each ¢ >0, there exisis a
nonnegative ye A such that |x —y|<e Me)=x() (i=1,...,n), and
13 = fx.

Proof. Let xe C(T), x(1)>0 for all teT, and ¢>0. We can assume
| x| = 1. Applying Theorem 4.1 to the function v/x, we obtain a y, € A4 such
that |Vx—yi| <e2, yi(t)=Vx(t) (i=1,....,n), and |y =|Vx|=1.
Setting y =y, %, wesee that ye 4, y > 0, (1) = x(¢) (i = 1,..,m), | ¥]| = 1, and

lx =yl =lx =22 <UVx] +2DIVE =] <,

which completes the proof.

Remark 4.2. 1t is worth noting that Corollary 4.1 is actually equivalent to
Theorem 4.1. For we have just shown that Theorem 4.1 implies Corollary 4.1.
On the other hand, if Corollary 4.1 is assumed, and x € C(T), ¢ >0, write
X = x; — X, where x, = max {x,0}, and x, = max {—x,0}. By Corollary 4.1,
we can choose nonnegative functions y, and y, in 4 such that |x, — y;| <€/2,
yit)=x() (G=1..,n), and ||y, =[x (i=1,2). Setting y =y, — y,, we
seethatye 4, [|x — y| <e () = x(t) (i=1,...,n), and

17l < max {[|y], || y2} = max {{x,[, |x2]} = ]
Thus (C(T), 4, {6,, -..,6;,}) has property SAIN.
Remark 4.3. We have already observed (cf. Remark 4.1} that Theorem 4.1

is false, in general, if ““dense subalgebra” is replaced by “dense subspace” or
even “‘dense subspace containing constants.” We now show that Theorem 4.1
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is also false, in general, if the point evaluation functionals are replaced by other
functionals. Let 4 = span {x,x,...}, where x(f)=¢ (i=1,2,...). By the
Stone-Weierstrass theorem, A is a dense subalgebra of C([1,2]). Let x*(x) =
{2 x(¢)dt, for all x € C([1,2]). Consider the constant function xo(f)=1¢ 4.
Each y € 4 which has the property that x*(y) = x*(x;) = 1 must clearly satisfy
[ 7] > 1 =|xo|. Hence (C([1,2]), 4, {x*}) does not have property SAIN.

We note that in the above example the functional x* does not attain its
norm on S(4). We now give an example where x* does attain its norm on
S(4), yet (C(T), A4, {x*}) still does not have property SAIN. Let # denote the
set of algebraic polynomials, and define x* on C([0, 1]), by x*(x) = 2 1/ x(¢)dr.
Let x4 € C([0,1]) be such that x,(#) =1 if 0 < <3, x¢(1) =0, and |Jxo| = 1.
Now, x* attains its norm on S(£)at the constant 1 function (and at no other
point of S(#)). If y e, and x*(y)=x*(xy)=1, then p(f)=1, so that
[xo — ¥} = 1. Thus (C([0, 1]),2, {x*}) does not have property SAIN.

Remark 4.4. In view of the above examples, one might be led to conjecture
that a necessary condition that (C(T), 4, {x,*,...,x,*}) have property SAIN, is
that x;* espan {8,:1 €T} (i=1,...,n). However, the following is a simple
counterexample. Let & be as in Remark 4.3, and define x* on C([0,1]) by
x*(x) = [§ x(¢)dt. Clearly, x* attains its norm at the unique point 1 € S(%).
By Theorem 2.1, it follows that (C([0, 11),47, {x*}) has property SAIN.

The following corollary is an immediate consequence of Theorem 4.1 and
the Stone-Weierstrass theorem, and it represents a strengthening of the latter.

COROLLARY 4.2. Let A be a subalgebra of C(T') which separates the points
of T, and such that, for each t € T, there is an element of A which does not vanish
at t. Then for each x € C(T), each finite set of points t,,....t,€ T, and each
e> 0, there exists a y € A such that |x — y| < e, y(t;) = x(t)) (= 1,...,n), and
|7l =1lx[-

Proof. By the hypothesis on A, it follows from the Stone-Weierstrass
theorem, that 4 is dense in C (7). An application of Theorem 4.1 now completes
the proof.

Recall that a linear sublattice of C(T) is a linear subspace L of C(T") with the
property that x\Vy € L and xAy € L whenever x,y € L, where

(:Vy)(1) = max {x(0), (1)}, and  (xAy)(®) = min {x(2), ¥(D)}.

THEOREM 4.2. Let L be a dense linear sublattice of C(T") which contains
constants, and let t,,...,t,€ T. Then (C(T),L,{3;,,...,6;}) has property SAIN.,

Proof. Let xe C(T), and e>0. We can assume |x| =1. By Yamabe’s
theorem, thereexists y; € Lsuchthat||x — y;| < e, and y,(1,) = x(z) (i =1,...,n).
Let e denote the constant 1 function, and set y = (y; A\e) V (—e). Then y e L,
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) =x(t) (i=1,..,n), and |y < 1. Now, if |»,(#)] <1, then ¥{(5) = y{1),
and so

[ (1) — x(8)] = | y1(8) — x(¥)] < e.
if y,(£) > 1, then y(¢r) = 1, and since x{(f) < 1,

| W) = x(@)] < [»:1() — x(1)] < e.
A similar argument shows that |y(f) —x(¢)] <e when y(f) <—1. Thus,
| x — y| < €, and the proof is complete.

Remark 4.5. The condition that L contains constants, in Theorem 4.2,
cannot be dropped. To see this, let

L ={xe C([0,1]): x'(0) exists, x'(0) = x{0)}.

It is easy to see that L is a dense linear subspace of C(j0,1]) which does not
contain the constant function e, where e{(t) = 1. If ye L, and y(0) = (0} =1,
then »'(0)=y(0)=1, and so, y(rf)>1 for some ¢>0;hence |y| > 1=le].
Thus, (C0,1]),L,{8,}) does not have property SAIN. To complete the
counterexample, we shall show that L is a sublattice of C([0,1]). It suffices to
show that if x,y e L, then xVye L. Let x,y € L, and let s = xVy. We can
assume that x(0) = y(0).

Case 1. x(0) > y(0).

Then x(¢) > y(¢) in some interval [0,8). Thus, s(¢) = x(¢) for all ¢<[0,8),
and hence s(0) exists, s'(0) = x'(0) = x(0) = 5(0), i.e., s € L.

Case 2. x(0) = y(0) (and hence x'(0) = »'(0)).

Given € > 0, choose 8 > 0 such that

X(t) X(O) and () —»0)
T

(0)[ < ¥(0) <§

whenever 0 <7< 3. Then, since s=34[{x+y+|x—y|], we have, for each
te(0,9),

= B0 = 3(0) 4 3 = 0) + ()~ 0] ~ x0) =

1rmtﬂm ym;ggwy@l

) +1

L1 \x(t) — @)
“ \

x() — y(t)\

<%e+£e+2‘ ‘ ze—l—l‘x{t)}y@}g.
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But, for each ¢ € (0,9),

{x(f) ;y(t) _|x® —t x(0) ¥(0) — [y(t) ; ¥0) y,(o)]i
BLOELUN x,(o)’ . ;ya) 0 y,(o)!
<e.
Hence, it follows that for each ¢ € (0,3),
s(H)—s(0)

t
i.e., 5'(0) exists, and s'(0) = x'(0) = x(0) = s(0); hence se L.

x’(O)‘ <letle=e,

5. AN APPLICATION IN L, (1 < p < )

Let (T, 2, 1) be a measure space, and for 1 < p < , let L, denote the Banach
space L,(T,Z, 1) with the norm |x| = |x], ([2]; p. 121). If 1 <p < o, then
L,* =L, where ¢! + p~' = L. If p =1, we shall assume that (7,2, p) is such
that L,* =L (e.g., this will be the case if (7,2, ) is o-finite). If 1 <p <,
and x* € L, then by the representer of x* we mean the function y € L, such
that

x*(x) = fT xyduy, forallxeL,,
and [x*|| = | »]q-
In this section we shall only be concerned with the case 1 < p < «.
Let M denote the subset of L, consisting of those functions which vanish off

a set of finite measure. M is a dense subspace of L, for 1 <p <« (cf. [2];
p. 125).

THEOREM 5.1. Let 1 <p < o, let M be as above, and let x*,...,x,* € L,*.
Then the following statements are equivalent.
(1) (L, M, {x,*,...,x,*}) has property SAIN.
(2) Eachx;* (i=1,...,n)attains its norm on S(M).
(3) The representer of each x;* (i=1,...,n) vanishes off a set of finite
measure.

Proof. We can assume that x;* #0fori=1,...,n.

(1) = (2)is a consequence of Corollary 2.2, since L,, is reflexive.
(2) = (3): Let y; e L, denote the representer of x;* (i=1,...,n), and
let m; € S(M) denote the point where x;* attains its norm, i.e.,

[,myde =1yl G=1,..m)
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By the condition for equality in Holder’s inequality, it follows that
yi=|m|" Tsgnm; ae. (i=1,...,n).
In particular, y; = 0 a.e. off a set of finite measure (i = 1,...,7). This proves (3).

(3) = (1): Let y; e L, denote the representer of x;* (i=1,....n), and
suppose that y, vanishes off a set T; of finite measure. Let x e L,, and
€ > 0. Let T, = Yhave the property that u(7,) < o, and {5, [x|?du <e?.

SetTo = (U Ti) U T,. Then u(Ty) < o, and each y; vanishes off 7. Define
1
a function y, by setting y = x on Ty, and y = 0 elsewhere. Then y € M,
=yl =], lx=ylrdu=[ __laldp<| _|xlrdu<e,

xM(y) = fT yyidp = fTo Yydp = f,[o xyidp= [ xyidp

= x;¥(x) (i=1,...,n),
and

A7 = [ \ylrdu= [, IxlPdu< [ |xl"du—|x]”

Thus, (L,, M, {x;*,...,x,%}) has property SAIN, and this completes the proof.

COROLLARY 5.1. Let M be the subspace of |, (1 < p < ) consisting of those
elements x =(£,,&,,...) having only finitely many nonzero components &,.
Let x,*,...,x,* € ¥ =1, The following statements are equivalent.

() (U, M, {x*,..,x,*}) has property SAIN.
(2) Each x;* attains its norm on S(M}.
(3) Therepresenter of each x;* has only finitely many nonzero components.

6. SOME APPLICATIONS IN L4

We continue to use the terminology and notation introduced in the last
section. As stated there, we assume L;* = L.

THEOREM 6.1. Let M denote the dense subspace of L, consisting of those
Sfunctions which vanish off a set of finite measure, and let x* € L\*. Then
(L, M, {x*}) has property SAIN.

Proof. We can assume ||x*| = 1. Let x € L, and e > 0. We shall show that
there is a y € M such that |x —y| < e, x*(p) = x*(x), and | y| <|x|. We can
assume that [x| = 1. If |x*(x)| < 1, the result is a consequence of Lemma 2.4
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Thus, we may suppose that x*(x) =1 (since the case x*(x) =—1 is similar).
Letting y, € L, denote the representer of x*, we have, in particular, that

foyldp.=1.

1t follows that y,(¢) = sgn x(f) (a.e.) where x(f) 0. Choose a set T such that
0 < u(T)) < o, and x# 0 on T;. In particular, y; # 0 on T;. Now choose a
set T, © T so that u(7) < o, and [, |x|dp < €/2. Define y as follows:

0 if ¢ T,
¥(&) =1 x(8) iftel,~Ty,
x()+8(f) ifteT,
where
1
S(t E*—ﬁf xpy dp.
@ Ty ) 11y ap
Note that
1
| < — d teT)).
B0l < [ slde @em
Then,

o) = [ yyrdp= [ G+ Oydut [ xvidu
= f X derle 8y, du=sz Xy dp,+fM2 xyy dp
= [ 21 dp =),

Ix — ) =le lald“jMz Ix] dp<2meTz x| du < e,
and

A= Ioldp=] Tx+8ldu+]__ |xlda
<[, xldur [ 18] dn

<[, 1xldu+ [, Ixldu= [ Ixldu=]].

This completes the proof.

CoOROLLARY 6.1. Let M be the subspace of I, consisting of those elements
x=(£1,&2,...) having only finitely many nonzero components, and let x* € I;*,
Then (I, M, {x*}) has property SAIN.

In contrast to Corollary 6.1, we now give an example of a dense subspace

M of I, and an x* e [;*, such that (/;, M, {x*}) dogs not have property SAIN..
In fact, we shall verify
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PrOPOSITION 6.1. Let M={y=y,n..)€l: 27 m,=0}, let x=
(1,0,0,...), and let x* = (1,—1,1,1,..)e [\* = [_. If 0 < e < %, then there does
not exist any y € M such that | x — y|| < €, x*(p) = x*(x), and || y| = x]|.
Proof. We have already observed that M is a dense subspace in /; (cf.
Proposition 2.2). If the result is false, then there exists a y = (5;,73,...) € M

suchthat|x — y|| < £, x*(y) = x*(x) = 1,and | y| = 1. Tt follows thatn; = 1 — §,
for some & with 0 <8 < 1. Now | y| = | implies that 1 — 8 + 35 |0, =1, i.e.

8= Iml =2 m.l. (6.1)
From the condition x*(y) = 1, we deduce that 1 —8 — 1, + >¥ 7, =1, i.e.,
§+m; = g N (6.2)

Using egs. (6.1) and (6.2), we get

3= bl <[54 7al = S < 3 = 8=

Thus, equality must hold in this string of inequalities, and, in particular,
8— || =8+ mn] >0 6.3

From egs. (6.1), (6.2), and (6.3), we get that >% |9,| = 25 7, from which it
follows that 7, > 0,foralln = 3. Sincey € M, wemusthave 1 — & + >3 ny, =0,
or

1—3+27)2+;n77,,=0. (6.4)
But, by eq. (6.3), we see that |n,| < 86 <4, and since , >0 foralln> 3,
1—6+2+>nn=>1—8-+29>0,
3
which contradicts eq. (6.4). This contradiction completes the proof.

Remark 6.1. We recall that the same subspace M of /; which was used in
Proposition 6.1, was also used in Proposition 2.1 to obtain a counterexampie
of a somewhat different flavor.

Remark 6.2. We do not know whether Theorem 6.1 is valid for more than
one functional x*. However, we can prove the following result (Theorem 6.2)

in this direction.
24
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An element y e L, is said to be eventually constant, provided that there
exists a set 7, such that u(7},) < », and y(¢) = const. for ¢ ¢ T},

In the following theorem we shall assume, in addition, that (7,2, u) is
o-finite.

THEOREM 6.2. Let M be as in Theorem 6.1, and let x,*,...,x,* € L*. If for
each i=1,...,n, the representer for x* is eventually constant, then
(L, M, {x,*,...,x,*}) has property SAIN.

Proof. If W(T) < w, then M =L, and the result is trivially true. Thus, we
can assume (7)) = «. Let y; € L denote the representer for x;* (i=1,...,n),
and let T; be a set such that y(f)=q; forall t ¢ T; (i=1,...,n). Let xelL;
and e > 0. We shall construct a y € M such that |x — y| <€, x,*(¥) = x;,*(x)
(i=1,...,n), and | y| <|x]. Using the o-finiteness of (7, %, x), we can choose
a set T, so that

7,5UT, M(TO ~ UTi)>0,
1 1
w(To) <, and fTqu |x] dp < €]2.
(Actually, the o-finiteness was only used to assert
‘U’(TO ~ G Tz) >0.)
1

Define y as follows:
0 ift ¢ Ty,

n  iteeUT,
y(t): X() 1 El

x(t)+8 iftETONLnJTi,
1

1
8= 7% d
fr~tn)) o
1 T~Tg
Thenye M,

=3l =1,._ ¢, Bl oo lxldus [ Ixldu+ [ [xldu<e,

where

ny||=f§,,i lxldu+fw§n |x+8|d;»<f“1x1du+fw§,i181du

<[, ldldut [ lxlde =),
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and, foreachi=1,...,n,

* = — ;
Xy (y)—fToyyidu——fréTkxyiderTow b (e + 8y dpe
=fT0xyidy+8fT0m I.;Tkaid,u;

:fToxyidH+ai fTwTOXd'uszoxyidH'-{—fTwToxyidu

= J‘T XY dfl: = xi*(x).

This completes the proof.

An element (§,,&,,...) € 1, is eventually constant if there is an index N such
that SN = §N+1 = e

COROLLARY 6.2. Let M be the subspace of |, consisting of the elements having
only finitely many nonzero components, and let x.*,...,x,* € l,* =1_. If each
x;* is eventually constant, then (I, M, {x,*,...,x,*}) has property SAIN.,
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