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1. INTRODUCTION

In [8], H. Yamabe established the following "simultaneous approximation
and interpolation" theorem, which generalized a result of Walsh ([6]; p. 310)
(cf. also (1)), and is related to a theorem of Helly in the theory of moments
(cf. [2]; pp. 86-87):

THEOREM (Yamabe). Let M be a dense convex subset of the real normed
linear space X,and let Xl*' ... , xn* E X*. Thenfor each x E X, and each E> 0,
there exists aYE M such that Ilx - yl[ < E and x/(y) = x;*(x) 0 = 1, .. .,n).

Wolibner [7], in essence, proved that Yamabe's theorem could be sharpened
in the particular case where X = C([a, b)), M = [!/J = the set of polynomials,
and where the x;* are "point evaluations". Indeed, from the results of [7], one
can readily deduce the following

THEOREM (Wolibner). Let a < t r < t2 < ... < tIl < b, and let [!/J be the set of
polynomials. Then for each x E q[a, b)), and each E> 0, there exists apE [!/J

such that Ilx - pl[ < E,p(t;) = x(t;) (i = 1, . .. ,n), andilpil [[xii.
Motivated by Wolibner's theorem, we consider the following more

general problem. Let M be a dense subspace of the normed linear space X,
and let {xr*, ,xn*} be a finite subset of the dual space X*. The triple
(X,M,{xr*, ,xn*}) will be said to have property SAIN (simultaneous
approximation and interpolation which is norm-preserving) provided that the
following condition is satisfied:

For each x E X, and each E > 0, there exists ayE M such that

Ilx- yll < E, x;*(y) = x;*(x) 0= 1, ... ,n),and Ilyll = flxll·

1 Supported by grants from the National Science Foundation.
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It is not hard to give examples of triples (X,M, {XI *, .. "Xn*}) which do not
have property SAIN. On the other hand, for those triples which do have
property SAIN, we have a stronger conclusion that can be gleaned from
Yamabe's theorem. It is the purpose of this paper to determine necessary and
sufficient conditions in order that a triple have property SAIN. After establish­
ing some useful results of a general nature in §2, we prove (Theorem 3.2) that
if M is a dense subspace of a Hilbert space X, and if X1*" .. , Xn* E X*, then
(X,M, {XI*," .,xn*}) has property SAIN ifand only if each Xi* attains its norm
on the unit ball of M. In §4 we consider the case X = C(T), T compact Haus­
dorff. The main result here (Theorem 4.1) is that (C(T),M,{xI*, .. ,xn*}) has
property SAIN if M is a dense subalgebra (or dense linear sublattice containing
constants), and the Xi* are point evaluations. This result contains that of
Wolibner, and represents a strengthening of the Stone-Weierstrass theorem
(Corollary 4.2). Various counterexamples are constructed, which show that
these results cannot be extended very far. In §5, we consider a particular dense
subspace of X = L p for 1 < p < OCJ, and in §6, a particular dense subspace of
X = L I • We also pose a few open problems.

It is worth mentioning here some specific results which are somewhat related
to our problem. We first remark that Wolibner actually showed that if
x(ti+!) ¥- x(ti), then the polynomial p of the conclusion of his theorem can be
chosen to be monotone in each of the intervals [t i , tHd. S. Young [9],
independently, gave an elegant proof of this latter fact. Paszkowski ([4]; p. 8)
dropped the approximation part of the conclusion of Wolibner's theorem
(i.e., he sought only a polynomial p such that p(ti) = x(t;) (i = 1, .. .,n), and
Ilpll = Ilxll), and showed that in this case the degree of the polynomialp which
works is independent of the function X being interpolated, and depends only
on the points til Singer [5] extended Yamabe's theorem to the case where X
is a real linear topological space. Also, in [1] there was given a different proof
of Yamabe's theorem, where M is a subspace in any (real or complex) linear
topological space. We now observe that the following theorem, which en­
compasses the main results of both [5] and [1], is true.

THEOREM 1.1. Let M be a dense convex subset of the (real or complex) linear
topological space X, and let fl" ..,f" be continuous linear functionals on X.
Then for each x E X, and each neighborhood U of x, there exists aYE M such
that y E U, andj;(y) = J;(x) (i = 1, .. .,n).

The proof of Theorem 1.1 is exactly the same as in [5]. We recall that the
essential fact used there was the well-known result that if M is a dense convex
subset of the real linear topological space X, and Y is a subspace of X having
finite codimension, then M n Y is dense in Y. We need only observe that this
fact is also true in case X is a complex linear topological space. To see this,
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we employ the standard trick of regarding X as a real space, and then note that
if Y has (finite) codimension n in the complex space X, then Y has (finite)
codimension 2n in the real space X.

We conclude the introduction by reviewing some notation and terminology.
Throughout the paper Xwill denote a real normed linear space (although some
of our results are valid in complex spaces, as well), X* will denote the dual of
X, i.e., the Banach space of all continuous linear functionals x* on X, with the
norm Ilx*11 = sup {lx*(x)l: II xii < I}. The closed unit ball of a normed linear
space Y, denoted S( Y), is the set {y E Y: II yll < I}. A functional x* E X* is
said to attain its norm on SeX), if there is an element x E SeX) such thatx*(x) =
lix*ll. By subspace we shall always mean linear subspace. All other notation
and terminology will conform to those in [2].

2. GENERAL RESULTS

LEMMA 2.1. Let M be a dense subspace of X, andlet r be afinite-dimensional
subspace of X*. Let x E X, E> 0, and suppose there exists a Yl EM such that
Ilx - YIII < E, X*(YI) = x*(x) for all x* E r, and Ilydl < Ilxll. Then there exists a
hEM such that Ilx - hll < E, X*(Y2) = x*(x)for all x* E r, and II > I[xll·

Proof Letllx - yIII = AE where°< A< I,andsetz= 2x - Yl' Thenllx -zll =
IIYI - xii = Ae, x*(z) = 2x*(x) - X*(YI) = x*(x) for all x* E r, and I[zll =
112x - yIII :> 21Ixll-IIYIII > Ilxll· By Yamabe's theorem, we can choose Y2 E M
such that X*(Y2) = x*(z) (=x*(x)) for all x* E r, and liz - Y211 < min {(l- A)E,
I[zll -II xii}· Then

Ilx - hll < Ilx - zll + liz - hll < AE + (l - A) E= E,

and
II Y211 = II Y2 - z + zll :> [[zll -liz - Y211 > llzll - (llzll -II xii) = Ilxll,

which completes the proof.

LEMMA 2.2. Let X, M, andr be as in Lemma 2.1. Let x E X, E> 0, andsuppose
there exist YJ,Yz in M such that I[x - yJil < E, X*(YI) = x*(x) for all x* E r,
and II YIII < II xii < II Yzll· Then there exists ayE M such that Ilx - yll < E, x*(y) =
x*(x) for all x* E r, and Ilyll = Ilxll.

Proof For each AE [0,1], define YA = Ayz + (1- A)YI' Then JA EM for
each AE [0,1], and the function f(A) = llJAl1 is continuous on [0,1]. Since
f(O) = [[yIII, and f(l) = IIYzII, it follows that there is a Ao E (0, 1) such that
f(Ao) = Ilxll, i.e., I[YAoll = Ilxll. Also,

Ilx - YAol1 = II Ao(X - yz) + (1 - Ao)(x - YI)II

< Aollx - hll + (1 - Ao)llx - YIII < E.



358

Finally, for each x* E r,
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X*(YilO) = AoX*(Y2) + (1 - Ao) X*(YI) = Aox*(x) + (1 - Ao) x*(x)

= x*(x).

Taking Y = Yilo completes the proof.

As an immediate consequence of Lemmas 2.1 and 2.2, we obtain
,

LEMMA 2.3. Let M be a dense subspace of X, and let r be afinite-dimensional
subspace of X*. Let x E X, e > 0, and suppose there is a YI EM such that
Ilx - y,11 < e, X*(YI) = x*(x) for all x* E r, and lIy,11 < Ilxll. Then there exists
Y E M such that II x - yll < e, x*(y) = x*(x) for all x* E r, and II yll = II xii.

Remark 2.1 Lemma 2.3 can be reworded as follows: (X,M, {xj*, ... ,xn*D
has property SAIN if and only if for each x E X, and each e > 0, there exists
Y E M such that Ilx - yll < e, xi*(y) = x;*(x) for i = 1, ... , n, and II yll < Ilxll.

The following is a helpful tool which will be used throughout the sequel.

LEMMA 2.4. Let M be a dense subspace of X, and let x* E X*, Ilx*[1 = 1. Let
x E X, Ilxll = 1, and suppose that Ix*(x)1 < 1. Then for each e > 0, there exists
Y E M such that Ilx - y[1 < e, x*(y) = x*(x), and Ilyll = Ilxll.

Proof It suffices to consider the case °< x*(x) < 1. Choose Xo E X such
thatllxoll < 1, andx*(x) < x*(xo). Select any AE (0, 1) with 1- ellx-xoll- ' < A,
and set x+ = Ax + (1 - A)xo. Then Ilx+11 < Allxll + (1 - A)llxoll < 1,

x*(x+) = Ax*(x) + (1 - A) x*(xo) > x*(x),

and
Ilx - x+11 = 11(1- A) (x - xo)11 = (1- A)llx - xoll < e.

Thus, letting S(z;r) denote the open sphere centered at z, with radius r (i.e.,
the set {w E X:llw -zll < rD, and H+ = {z E X:x*(z) > x*(x)}, we have shown
that the open set

u+ = S(O; 1) n Sex; e) n H+

is not empty. Similarly, the open set

u- = S(O; 1) n S(x;e) n H-

is not empty, where H- = {z E X: x*(z) < x*(x)}. (In fact, the element x- =

O(x + (1 - O()(-xo), where 0( E (0, 1), and 1 - e[lx + xoll- I < 0(, is in U-.) Since
M is dense, we can choose points y+ E M n U+, and Y- EM n U-. Let
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Y E (0, 1) be chosen so that the element y = yy+ + (l - y)y- satisfies x*(y) =

x*(x). Clearly, bll < 1, and

Ilx - yll = Ily(x - y+) + (1 - y)(x - y-)II

~ yllx - y+11 + (l - y)llx - y-II < E.

An appeal to Lemma 2.3 completes the proof.

Remark 2.2. The hypothesis Ix*(x)1 < 1, in Lemma 2.4, is essential. Indeed,
the following example shows that the conclusion of Lemma 2.4 does not hold,
in general, if Ix*(x) I= 1. Let X = C([O, 1]), and let

M = {x E C([O, l]):x'G) exists, x'G) = x(O) - x(l)}.

It is not hard to see that M is a dense subspace of C([O, 1]). Define x* on Xby
x*(x) == x(t). Then x* E X*, and Ilx*11 = 1. Let Xo E X be defined by xo(t) = 1
if 0 ~ t ~ t, and xo(t) = -2t + 2 if t < t ~ 1. Then Ilxol! = 1, and x*(xo) = 1.
Clearly, if y E M, x*(y) = x*(xo), and II yll = Ilxoll, then y'm = O. In particular,
yeO) = y(l). It follows that

max {lxo(O) - y(O)I, [xo(l) - y(l)l} ;;;, t,

and hence Ilxo - yll ;;;, t. Thus, for x = xo, and 0< E ~ t, it is not possible to
find ayE M satisfying the conclusion of Lemma 2.4.

Remark 2.3. Unfortunately, Lemma 2.4 cannot be extended so as to be
valid if there were more than one norm-one functional x* satisfying Ix*(x)1 < 1.
In fact, we can even prove somewhat more. Namely,

Proposition 2.1. There is a dense subspace M of Ij, functionals x*,y* in
with Ilx*11 = IIY*II = 1, and an element x E I, with Ilxll = 1, Ix*(x)1 < 1,. and
Iy*(x)I < 1, having the property that it is not possible to find ayE M such that
Ilyll = Ilxll, x*(y) = x*(x), and y*(y) = y*(x).

Proof As usual, we identify 1,* with the sequence space 100 , Let

M = {y= (1],,1]2'''') E I,: ~ n1]n =o}, x* = (1,-1, 1,0,0, ...) E 100 ,

y* = (-1, I, -t,t,t, ...) E 100 , and x = (0,0, O,t, m2
, m3,·· .).

M is clearly a subspace of I,. To see that M is dense in II, it suffices to show that
each of the unit vectors

(k= 1,2, ...)
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can be approximated arbitrarily well by elements of M (since span {el>ez, ...}
is dense in II)' Fix an index k, and let E > O. Choose n> k so that n- I < E.

Then the vector
y = (0, ... ,0,1,0, ..., O,-n- I , 0, ...)

l...---.,,-_.-J L.--y---J

k-I nk-k-I

is in M, and Ilek - yll = n- I < E. Thus, M is dense. Now, Ilx*11 = llY*11 = 1,
x E II, and Ilxll = Li (!)k = 1. Also, x*(x) = 0, and y*(x) = Li (1-)k+l = l Let
y = (7]1,7]2,''') E M, and suppose that x*(y) = x*(x), y*(y) = y*(x), and
llYlI = jjxll = 1. It follows that

7]1 - 7]z + 7]3 = 0,
00

-7]1 + 7]2 - -t7]3 + -t L 7]n =-t,
4

and Li l7]nl = 1. Solving for 7]z from the first equation, and substituting into
the second, we deduce that Lf 7]n = 1. This, along with the third equation,
implies that 7] I = 7]2 = 7]3 = 0, and 7]n > 0 for all n. Buty E M, so that Li n7]n = 0,
and, hence, 7]n = 0 for all n, i.e., y = 0, which is a contradiction. This completes
the proof.

By examining the steps of the proof, we observe that the proposition is valid
for any dense subspace M of II which does not contain any positive elements,
i.e., nonzero elements y = (7]1>7]2,"') such that 7]n > 0 for all n.

The following two theorems follow rather easily from Lemma 2.4.

THEOREM 2.1. Let M be a dense subspace of X, x* E X*, and suppose that
either x* does not attain its norm on SeX), or x* attains its norm on SeX) only
at points in M. Then (X, M, {x*}) has property SA/N.

Proof Let x E X, and E > O. We can assume that Ilx*11 = Ilxll = 1, and x ¢ M.
By hypothesis, Ix*(x)1 < 1. By Lemma 2.4, there exists ayE M such that
Ilx - yll < E, x*(y) = x*(x), and Ilyll = Ilxll. This completes the proof.

Remark 2.4. The converse of Theorem 2.1 is false. For example, as a conse­
quence of Theorem 4.1 below, it follows that there are triples (X,M, {x*}) with
property SAIN, and such that x* attains its norm at points in SCM), as well
as at points in SeX) '" M.

THEOREM 2.2. Let M be a dense subspace of the strictly convex normed linear
space X, let x* E X*, and suppose that x* attains its norm on SCM). Then
(X,M, {x*}) has property SA/N.

Proof By strict convexity, x* must attain its norm at a unique point of M,
so that Theorem 2.1 applies.
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Remark 2.5. The hypothesis that X be strictly convex, in Theorem 2.2,
cannot be dropped. In fact, the same example as in Remark 2.2 establishes
this fact.

THEOREM 2.3. Let M be a dense subspace of the normed linear space X, and
let Xl*""'xn* E X*. A necessary condition that (X,ll1,{XI*""'xn*}) have
property SAIN is that each x;* either attains its norm on SCM), or does not
attain its norm on SeX) at all.

Proof If some x i* attained its norm at a point x E SeX) <'oJ M, but not on
SCM), then we would have, in particular, that Xi*(Y) < lixi*11 = xi*(x) for all
y E SCM). This contradicts property SAIN, and completes the proof.

In the case of a strictly convex space, and one interpolation condition, i.e.,
n = 1, the necessary condition of Theorem 2.3 is also sufficient, as a conse­
quence of Theorem 2.2. Thus we have the following.

COROLLARY 2.1. Let M be a dense subspace ofthe strictly convex normed linear
space X, and let x* E X*. Then (X,M, {x*}) has property SAIN if and only if
either x* attains its norm on SCM), or x* does not attain its norm on SeX) at all.

In a reflexive Banach space X, it is well known that every x* E X* attains its
norm on SeX). (Indeed, this property characterizes reflexive Banach spaces
[3]; Theorem 5].) Thus we immediately obtain the following corollary of
Theorem 2.3, which we state for future reference.

COROLLARY 2.2. Let M be a dense subspace of the reflexive Banach space
and let Xl *, .. ',Xn* E X*. A necessary condition that (X, M, {Xl *, .. "Xn*}) have
property SAIN is that each x;* attains its norm on SCM).

Combining Corollaries 2.1 and 2.2, we deduce

COROLLARY 2.3. Let M be a dense subspace of the strictly convex reflexive
Banach space X, and let x* E X*. Then (X, M, {x*}) has property SAIN ifand
only ifx* attains its norm on SCM).

Remark 2.6. It is an interesting open question whether the necessary condi­
tion of Corollary 2.2 is also sufficient in the case n > 1. (As we shall see in §3,
the answer is in the affirmative if X is a Hilbert space. Also, we shall see in §5
that the answer is affirmative for a certain subspace M of L p (1 < p <
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3. THE HILBERT SPACE CASE

In the case where X is a Hilbert space, we can give a complete characterization
of those triples having property SAIN (Theorem 3.2). It can be easily deduced
from

THEOREM 3.1. Let M be a dense subspace of the Hilbert space X, and let
YI>" .,Yn E M. Thenfor each x E X, and each E > 0, there exists Y E M such that
[[x - y[[ < E, <Y,Yi) = <X,Yi) (i = 1, 00 .,n), and l[yll = [[xii·

Proof It is no loss ofgenerality to assume that the Yi are linearly independent.
By replacing the Yi by an orthonormal basis for Y == span {Yb" .,Yn}, we can,
in fact, assume that the Yi are orthonormal. Let x E X, and E > O. Since
X = Y EB y..L ([2]; p. 249), we can write x = "27 "'iYi + z, where "'i = <X,Yi)
and z E y..L. Since y..L has finite codimension, M n y..L is dense in y..L (cf.
the remark following Theorem 1.1). Thus we can choose W E M n y..L so that
liz - wl[ < E, and [[ wl[ < Ilz[[. Then, setting Y = "27 ",iYi + w, we have that
Y E M, Ily - x[1 = [[z - wll < E, <Y,Yi) = "'i = <X,Yi) (i = 1, 00 .,n), and IIY11 2=
[1"27 "'iydl 2+ [[W[[2 < [["27 "'iYi11 2+ [lzll2 = [lx[[2. An appeal to Lemma 2.3
completes the proof.

THEOREM 3.2. Let M be a dense subspace of the Hilbert space X, and let
x,*, 00 .,x/ E X*. Then (X,M, {x,*,oo .,x/}) has property SAIN if and only if
each Xi* attains its norm on SCM).

Proof The necessity is a consequence of Corollary 2.2. To prove the
sufficiency, we first observe that corresponding to each x;*, there is a unique
Yi E X so that x;*(x) = <X,Yi) for all x E X, and [Iydl = [IXi*[[ (cf., e.g., [2];
p. 249). Letting mi E S(M) denote the point where Xi*attains its norm, we have
that Ilxi*ll=x;*(mi) (i=l,oo.,n), i.e. [[Yill=<mi,Yi) (i=I, ... ,n). By the
condition for equality in Schwarz's inequality ([2]; p. 248), we deduce that
Yi = IIYilimi EM (i= 1, ... ,n). An application of Theorem 3.1 now completes
the proof.

4. THE CASE OF SPACES OF TYPE C(T)

Throughout this section, T will denote a compact Hausdorff space, and
C(T) the real-valued continuous functions on T, endowed with the supremum
norm. If t E T, we define 8t to be the linear functional "evaluation at t", i.e.,
8t (x) = x(t) for all x E C(T).

LEMMA 4.1. Let M be a dense subspace of C(T), and let t" ... ,tnE T. Let
x E C(T) satisfy Ix(ti)1 < Ilxll (i = 1, .. .,n). Then for each E > 0 there exists a
Y E M such that Ilx - y[[ < E, yeti) = x(ti) (i = 1, .. .,n), andlly[[ = Ilx[l.
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Proof We may assume that Ilxll = 1. By Lemma 2.3, it suffices to show that
there is ayE M such that Ilx - yll < E, yeti) = X(ti) (i = 1, .. .,n), and [jyll < 1.
We proceed by induction on n. For n = 1, the result is a consequence of Lemma
2.4. Now suppose the conclusion holds for N or fewer points tio and let
t h ... , tN+1 E T. By hypothesis, there exists a y, E M such that Ilx - YIII < E,

YI(ti) = x(ti) (i = 1, ... , N), and II YIII < 1. Let e = x(tN+!). IfYI(tN+,) = e, we are
done. Suppose, then, thatYI(tN+l) -# e. We can assume thatYI(tN+ I) > e, since
the other case is similar. Let EI = min {E, 1 -lei}. Let Vbe an (open)neighbor­
hood of tN+1 such that ti rf= V for i = 1, ... , N, and Ix(t) - el < Ed2 if t E V. By
Urysohn's lemma, we can choose h E C(T) such that h(tN+!) = -Etl2, h(t) = 0
if t rf= V, and Etl2 < h(t) <°for all t E T. Then Ilx + hll = 1, (x + h)(ti ) = x
(i=I, ... ,N), and (x+h)(tN+,)=e-Etl2. Choose yzEM such that IIY2­
(x + h)11 < Etl2,yzeti) = (x + h)(ti) = x(ti) (i = 1, ... ,N), and II Yzll < Ilx + hll = I
ThenYz(tN+l) < e, and

II Yz - xii < II Yz - (x + h)11 + Ilhll < Etl2 + Etl2 = EI < E.

Let Y be the convex combination of YI and Y2 such that y(tN+I) = e. Then
Y E M, llx - y[[ < E, yeti) = x(ti) (i = 1, ... ,N + 1), and IIYII < 1. This com­
pletes the induction and the proof.

Remark 4.1. From Lemma 4.1, it is tempting to conclude that
(C(T),M, {OtI'" .,Otn}) has property SAIN. However, we recall that in Remark
2.2 we gave an example of a dense subspace M of C([O, 1)) which contained
constants, but such that (C([O, 1]), M, 01/Z) did not have property SAIN.

On the other hand, if M is a dense subalgebra of C(T), then
(C(T), M, {OtJ"'" Otn}) does have property SAIN.

THEOREM 4.1. Let A be a dense subalgebra ofC(T), and let t l , ••. ,tn E T. Then
(C(T), A, {at I' ••• , Otn}) has property SA/N.

Proof We need the following

LEMMA 4.2. Let A and {ti} be as in the theorem. For each E> 0, there exists
an element e E A such that lie - 111 < E, e(ti) = 1 (i = 1, .. .,n), and e < 1.

Proof of Lemma. By Yamabe's theorem we can choose ayE A such that

IIY - 111 < ~,and yet;) = 1 (i = 1, . .. ,n). Then IIYz 2y + 111 < E. Let e = 2y-­
y2. Then eEA, lie-III < E, and e(ti)= 1 (i= 1, .. .,n). Also, yz_ 2y+ 1;;,0 implies
that e = 2y - y2 < 1. This proves the lemma.

To prove the theorem, let x E C(T), and E > O. We can assume that Ilxll = 1
and E < 1. By Lemma 2.3, it suffices to show the existence of ayE A such that
Ilx - yll < E, yeti) = x(ti ) (i = 1, ... ,n), and I!yll < 1. We proceed by induction
on n. For n = 1, let e = X(tl)'
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Case 1. lei < 1.
This is just a special case of Lemma 4.1.
Case 2. leI = 1.
We may assume that e = 1. Choose el > 0 so that 2V2el + elZ < e/4.

Let z(t) = vI - x(t). By Yamabe's theorem, we can choose YI E A so that
II YI - zll < el> and YI(tI) = z(tl ) = O. Then

IIYI2- zZ11 «IIYIII + Ilzll)IIYI - zll < (v2 + el + V2)el (4.1)

= 2V2el + el2< e/4.

Let A= 2(2 + ef2)-I. Then

IIAYI2- z211 < AIIYI 2
- z211 + (1- A)II z211

< e/4 + 2e/4 = 3e/4.

Choose ez > 0 so that e2 < 2- 2(2 + e/4) (2 + e/2)-I. By Lemma 4.1, there
exists e E A such that lie - 111 < min {e/4,e2}' e(t l ) = 1, and e < 1. Set Y =
e - AYI 2• Theny EA, andy(tl ) = 1 = X(tl)' Also,

Ily - xii = lie - AYI2
- I +z211 < lie - III + IIz2- AY/II < e/4 + 3e/4 = e.

Moreover, Ilxll = 1 implies 0 < 1- x < 2 (i.e., 0 < zZ < 2), and so 0 < YI Z<
2 + e/4, from eq. (4.1). Then

0< AYI 2 < 2(2 + ef2)-1(2 + e/4) < 2- e2'
Finally,

-1 < -1 + (e - I + ez) < e - AYI2 < e< 1.

In particular, bll < 1. This proves the theorem, in case n = 1.
Now suppose the conclusion holds for N or fewer points ti' and let

tl>"" tN+I E T. Let e = X(tN+I)' By hypothesis, there exists a YI E A such that
Ilx - YIII < e, YI(ti) = X(ti) (i = 1, .. .,N), and II YIII < 1. If y,(tN+I) = e, we are
done. Suppose, then, that YI(tN+l) i= e. We assume that YI(tN+I) > C, since the
other case is similar. Since II YIII < 1, -1 < C < 1.

Case 1. -1 < e < 1.
Proceeding exactly as in the proof of Lemma 4.1, we deduce the existence

of ayE A such that Ilx - yll < e, yeti) = X(ti) (i = 1, .. .,N+ 1), and Ilyll < 1.
Case 2. e=-1.
Let z(t) = vI + x(t). Then Z(tN+!) = O. By case 1, we can find a YI E A such

that IIYI-zll<e/4v2, YI(ti)=Z(ti) (i= 1, ...,N+ 1), and IIYIII<llzll<v2.
In particular,

IIYI2- (1 + x)11 = IIYI2- z211 < (IIYIII + Ilzll)IIYI - zll
< 2v2 e/4V2 = e/2,
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and 0 < Yi 2 < 2. By Lemma 4.1, we can choose an e E A so that lie - Iii < E/8,
e(tJ = 1 (i = 1, .. .,N+ 1), and e < 1. Let Y = eYI 2

- e. Then YEA,

Ilx - yjj = Ilx + 1 - YI2+ (Y12- 1)(1- e)tl
< Ilx + 1 - YI211 + (11Y1211 + 1)111 - ell
< e/2 + 3e/8 < e,

and y(ti) = X(ti) (i = 1, ... ,N+ 1). Now 0 <Y12< 2, so that -1 <Y12-1 < 1.
Since lie - 111 < e/8, and e < 1, we have e{t) > 0 for all t E T. Thus,

-1 < -e < e(Y1 2
- 1) < e < 1,

and so IiYII = Ile(Y12- 1)11 < 1.
This completes the induction and hence the proof.

We can strengthen the conclusion of Theorem 4.1 for those functions in
C(T) which are nonnegative.

COROLLARY 4.1. Let A be a dense subalgebra of C(T), and let t1>"" tn E T.
Then for each nonnegative function x E C(T), and each E > 0, there exists a
nonnegative yEA such that Ilx - yll < E, y(ti) = x(ti) (i = 1, .. .,n), and
tlyll =llxll·

Proof Let x E C(T), x(t) ~ 0 for all t E T, and E > O. We can assume
Ilxll = 1. Applying Theorem 4.1 to the function vx, we obtain a YI E A such
that IIVx-Ydl<E/2, YI(ti)=VX(ti) (i=I, ... ,n), and liYIII=llvxll=l.
Setting Y =Y12,we see that YEA, Y ~ 0, yet;) = x(t;) (i = 1, .. .,n), Ilyll = 1, and

Ilx - ylt = Ilx - YI211 <(II vxll + IiYdl) II Vx - ydl < E,

which completes the proof.

Remark 4.2. It is worth noting that Corollary 4.1 is actually equivalent to
Theorem 4.1. For we have just shown that Theorem 4.1 implies Corollary 4.1.
On the other hand, if Corollary 4.1 is assumed, and x E C(T), E > 0, write
x = X J - X2, where XJ =max {x,O}, and X2 =max {-x,O}. By Corollary 4.1,
we can choose nonnegative functions YI and Y2 in A such that Ilxi - ydl < E/2,
Yi(t j ) = x;(tj ) (j = 1, .. .,n), and II ydl = Ilxill (i = 1,2). Setting Y =YI - Y2, we
see that YEA, Ilx - yll < E, y(tt) = x(t;) (i = 1, .. .,n), and

Ilyll <max {IIYIII, IIY21i} =max {llxdl, l[x21i} = Ilxl!·
Thus (C(T),A, {atl •• • ,atn}) has property SAIN.

Remark 4.3. We have already observed (cf. Remark 4.1) that Theorem 4.1
is false, in general, if "dense subalgebra" is replaced by "dense subspace" or
even "dense subspace containing constants." We now show that Theorem 4.1



366 DEUTSCH AND MORRIS

is also false, in general, if the point evaluation functionals are replaced by other
functionals. Let A = span {XI>X2,' ..}, where x;(t) == t; (i = 1,2, ...). By the
Stone-Weierstrass theorem, A is a dense subalgebra of C([l,2]). Let x*(x) =
II x(t)dt, for all x E C([l,2]). Consider the constant function xo(t) == 1 1= A.
Eachy E A which has the property that x*(y) = x*(xo) = 1must clearly satisfy
iIYll> 1 = Ilxoll. Hence (C([1,2]),A, {x*}) does not have property SAIN.

We note that in the above example the functional x* does not attain its
norm on SeA). We now give an example where x* does attain its norm on
SeA), yet (C(T),A, {x*}) still does not have property SAIN. Let f!JJ denote the
set ofalgebraic polynomials, and define x* on C([O, 1]), by x*(x) == 2 fA/2 x(t)dt.
Let Xo E C([O, 1]) be such that xo(t) = 1 if°< t <.1-, xo(l) = 0, and Ilxoll = 1.
Now, x* attains its norm on S(f!JJ)at the constant 1 function (and at no other
point of S(f!JJ)). If Y Ef!JJ, and x*(y) = x*(xo) = 1, then yet) = 1, so that
Ilxo - yll ;;;. 1. Thus (C([O, 1]),f!JJ, {x*}) does not have property SAIN.

Remark 4.4. In view of the above examples, one might be led to conjecture
that a necessary condition that (C(T),A, {XI*, .. ',Xn*}) have property SAIN, is
that x;*Espan{Dt:tET} (i=I, ... ,n). However, the following is a simple
counterexample. Let f!JJ be as in Remark 4.3, and define x* on C([O, 1]) by
x*(x) == fAx(t)dt. Clearly, x* attains its norm at the unique point 1 E S(f!JJ).
By Theorem 2.1, it follows that (C([O, 1]),f!JJ, {x*}) has property SAIN.

The following corollary is an immediate consequence of Theorem 4.1 and
the Stone-Weierstrass theorem, and it represents a strengthening of the latter.

COROLLARY 4.2. Let A be a subalgebra of C(T) which separates the points
ofT, and such that,for each t E T, there is an element ofA which does not vanish
at t. Then for each x E C(T), each finite set of points t I, •.• , tn E T, and each
E> 0, there exists ayE A such that Ilx - yll < E, yeti) = x(t;) (i= 1, ... ,n), and

Ilyll =llxll·

Proof By the hypothesis on A, it follows from the Stone-Weierstrass
theorem, that A is dense in C(T). An application ofTheorem 4.1 now completes
the proof.

Recall that a linear sublattice of C(T) is a linear subspace L of C(T) with the
property that xVy ELand xl\y E L whenever x,y E L, where

(xVy)(t) = max {x(t),y(t)}, and (xl\y)(t) = min {x(t),y(t)}.

THEOREM 4.2. Let L be a dense linear sublattice of C(T) which contains
constants, and let tl>"" tn E T. Then (C(T),L, {Dti , ... ,Dt.}) has property SA/N.

Proof Let x E C(T), and E > 0. We can assume IIxll = 1. By Yamabe's
theorem, thereexistsYI ELsuch thatllx - Yill < E, andYI(t;) = x(t;)(i = 1, .. .,n).
Let e denote the constant 1 function, and set y = (YI I\e) V (-e). Then y EL,
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y(ti) = X(t;) (i = 1, .. .,n), and bll ,,;; 1. Now, if IYl(t)1 ,,;; 1, then yet) =

and so
Iyet) - x(t)1 = IYI(t) - x(t)1 < E.

IfYI(t) > 1, then yet) = 1, and since x(t),,;; 1,

Iyet) - x(t)1 ,,;; IYI(t) - x(t)1 < E.

A similar argument shows that Iy(t) - x(t)1 < E when YI(t) < -1. Thus,
ilx - yll < E, and the proofis complete.

Remark 4.5. The condition that L contains constants, in Theorem 4.2,
cannot be dropped. To see this, let

L = {x E C([O, l]):x'(O) exists, x'(O) = x(O)}.

It is easy to see that L is a dense linear subspace of C([O, 1]) which does not
contain the constant function e, where e(t) == 1. If Y E L, and yeO) = e(O) = 1,
then y'(0) = y(O) = 1, and so, yet) > 1 for some t> 0; hence Ilyl! > 1= IIell­
Thus, (C([O, 1]),L, {oo}) does not have property SAIN. To complete
counterexample, we shall show that L is a sublattice of C([O, 1]). It suffices to
show that if X,Y EL, then xVy E L. Let x,Y E L, and let s = xVy. We can
assume that x(O) > yeO).

Case 1. x(O) > yeO).
Then x(t) > yet) in some interval [0,0). Thus, set) = xCt) for all t E [0,0),

and hence s'(O) exists, S'(O) = x'(O) = x(O) = s(O), i.e., s E L.
Case 2. x(O) = yeO) (and hence x'(O) = y'(0)).
Given 10 > 0, choose 0 > 0 such that

and

whenever 0 < t < o. Then, since s = t[x +y + I x - yl], we have, for each
t E (0,0),

Is(t) - s(O) _ x'(o)i
; t '

= I~ [x(t) - x(O) +yet) - yeO) + Ix(t) - y(t)IJ - X'(O)! ,,;;

,,;; 1- IX(t) ~ x(O) _ x/(O)I + 1- Iy(!) ~ yeO) - yl(O)1

+ l_lx(t) - y(O!
2 i t I

< t€ + t€ + 1- [X(t) ~ yet) = 1-10 +1\x(t) ~ yet) .
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But, for each t E (0,0),

IX(t) ~ y(t)1 = [X(t) ~ x(O) _ x'(O) _ [y(t) ~ y(O) _ y'(O)]!

<; IX(t) ~ x(O) _ X'(O)I + !y(t) ~ y(O) _ y'(O)1

<E.

Hence, it follows that for each t E (0,0),

j
S(t) - s(O) '(0)1 1 1_-,--,_--"---.:.. - X < -E + -E - Et 2 2 ,

i.e., s'(O) exists, and s'(O) = x'(O) = x(O) = s(O); hence s E L.

5. AN ApPLICATION IN L p (1 < p < co)

Let (T, 1:, p,) be a measure space, and for 1 <;p <; co, letLp denote the Banach
space LiT,1:,p,) with the norm Ilx[[ = [[xllp ([2]; p. 121). If 1 <p < co, then
L p* = Lq , where q-l +p-l = 1. If P = 1, we shall assume that (T,1:, p,) is such
that L 1* =Loo (e.g., this will be the case if (T, 1:, p,) is a-finite). If 1 <;p < co,

and x* E Lp, then by the representer of x* we mean the function y E Lq such
that

x*(x) = JT xy dp" for all x E L p ,

and [[x*[[ = Ilyllq.
In this section we shall only be concerned with the case 1 < p < co.

Let M denote the subset ofL p consisting of those functions which vanish off
a set of finite measure. M is a dense subspace of L p for 1 <; p < co (cf. [2];
p. 125).

THEOREM 5.1. Let 1 <p < co, let M be as above, and let x,*,. ",Xn* E Lp*.
Then the following statements are equivalent.

(1) (Lp,M, {Xl*" ",Xn*}) has property SAIN.
(2) Each Xi* (i = 1, .. .,n) attains its norm on S(M).
(3) The representer of each Xi* (i = 1, .. .,n) vanishes off a set offinite

measure.

Proof We can assume that xi* # 0 for i = 1, .. .,n.

(1) => (2) is a consequence of Corollary 2.2, since L p is reflexive.
(2) => (3): Let Yi E Lq denote the representer of Xi* (i = 1, .. .,n), and

letmi E S(M) denote the point where x i* attains its norm, i.e.,

(i= 1, ... ,n).
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By the condition for equality in Holder's inequality, it follows that

-I !p-IYi - mi sgn mi a.e. (i = 1, .. .,n).

In particular, Yi = 0 a.e. off a set of finite measure (i = 1, .. .,n). This proves (3).

(3) =>(1): Let Yi ELq denote the representer of x;* 0= l, ... ,n), and
suppose that Yi vanishes off a set Ti of finite measure. Let x E L p ,

E > O. Let T. c .Ehave the property thatfL(TE) < 00, and h-y€ IxlPdfL < EP.

Set To = (~ Ti) U T.. Then fL(To) < 00, and eachYi vanishes off To. Define

a function Y, by setting Y = x on To, and Y = 0 elsewhere. Then Y E M,

Ilx - y!!p = J Ix - yiP dfL = I Ixl P dfL < J' Ixi P dft < E
P,T T-To T~T€

x;*(y) = IT YYi dfL = ITo YYi dfL = ITo XYi dfL = JTXYi dft

= Xi*(X) (i = 1, .. .,n),
and

[Iyllp = Ir Iylp dfL = Iro IxlPdfL < IT IxlPdfL = l[xII P
•

Thus, (Lp, M, {Xl*'" .,xn*}) has property SAIN, and this completes the proof.

COROLLARY 5.1. Let M be the subspace of lp (1 < p < 00) consisting of those
elements x = (gj, g2,"') having only finitely many nonzero components g,.
Let Xl *, ... , Xn* E lp* = lq. The following statements are equivalent.

(1) (lP,M,{XI*""'xn*}) has property SAIN.
(2) Each xi* attains its norm on SCM).
(3) The representer ofeach Xi*has onlyfinitely many nonzero components.

6. SOME ApPLICATIONS IN L 1

We continue to use the terminology and notation introduced in the last
section. As stated there, we assume L 1* = L",.

THEOREM 6.1. Let M denote the dense subspace of L l consisting of those
functions which vanish off a set of finite measure, and let x* EL1*. Then
(Lj,M, {x*}) has property SAIN.

Proof We can assume llx*ll = 1. Let x ELI> and E > O. We shall show that
there is ayE M such that Ilx - yll < E, x*(y) = x*(x), and IiYII < llxll. We can
assume that [Ixll = 1. If Ix*(x)1 < 1, the result is a consequence of Lemma 2.4.
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Thus, we may suppose that x*(x) = 1 (since the case x*(x) = -1 is similar).
Letting YI E L ro denote the representer of x*, we have, in particular, that

f T XYI dft = 1.

It follows that YI(t) = sgn x(t) (a.e.) where x(t) i= O. Choose a set TI such that
0< fL(TI) < 00, and x i= 0 on T I. In particular, YI i= 0 on TI. Now choose a
set T2 ~ T 1 so that fL(T2) < 00, and h~T2lxldfL< E/2. Define Y as follows:

(

0 if t ~ T2 ,

y(t) = x(t) if t E T2 '" T lo

x(t) +o(t) if t E TI>
where

Note that

Then,

= f T XYI dfL = x*(x),

Ilx - yjl = f \01 dft + fix] dft';;;; 2 f Ixl dfL < E,Tl T-T2 T~T2

and

bll = f Iyj dft = f Ix + 01 dfL + f Ixl dftT Tl T2~Tl

,;;;; f Ixl dfL + f 18\ dftT2 Tl

,;;;; f Ixl dfL + f Ixl dfL = f Ixl dfL = !Ixll·T2 T~T2 T

This completes the proof.

COROLLARY 6.1. Let M be the subspace of II consisting of those elements
x = (tl> t2"") having only finitely many nonzero components, and let x* Ell *.
Then (lI>M, {x*}) has property SA/N.

In contrast to Corollary 6.1, we now give an example of a dense subspace
M of 110 and an x* EO II*, such that (II' M, {x*}) does not have property SAIN.
In fact, we shall verify
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PROPOSITION 6.1. Let M={Y=('lJ1>'lJ2, ...)EII:Ll'n1']n=0}, let X=
(1,0,0, ...), and let x* = (1,-1,1,1, ...) E II * = lro. JfO < E <:1:, then there does
not exist any y E M such that Ilx - yll < €, x*(y) = x*(x), and Ilyl[ = Ilx[l.

Proof We have already observed that M is a dense subspace in I, (cf.
Proposition 2.2). If the result is false, then there exists a y = ('lJ1> 'lJ2"") E M
suchthatllx - yll < !,x*(y) = x*(x) = 1, and [[y[[ = 1. It follows that 1]1 = 1 - 8,
for some 0 with 0<0 <!. Now Ilyll = 1 implies that 1 - 0 +L~ l7Jnl = 1, i.e.

(6.1)

From the condition x*(y) = 1, we deduce that 1 - 8 - 7]2 + L3' 'lJn =1, i.e.,

(6.2)

Using eqs. (6.1) and (6.2), we get

8 -1'lJ21 < 18 + 'lJ2\ = I~ 'lJn[ < ~ l'lJnl = 8 -17J21·

Thus, equality must hold in this string of inequalities, and, in particular,

(6.3)

From eqs. (6.1), (6.2), and (6.3), we get that L3'I'lJnl = L3' YJn> from which it
follows that 'lJn ~ 0, for all n ~ 3. Since y E M, we must have 1 - 8 +Lf n'lJn = 0,
or

ro

1 - 8+ 2'lJ2 + L n'lJn = O.
3

(6.4)

But, by eq. (6.3), we see that 1'lJ21 < 8 <!, and since 'lJn ~ 0 for all n ~ 3,

ro

1 - 0+ 2'lJ2 + 2: n'lJn ~ 1 - 0+ 27]2 > 0,
3

which contradicts eq. (6.4). This contradiction completes the proof.

Remark 6.1. We recall that the same subspace M of 11 which was used in
Proposition 6.1, was also used in Proposition 2.1 to obtain a counterexample
of a somewhat different flavor.

Remark 6.2. We do not know whether Theorem 6.1 is valid for more than
one functional x*. However, we can prove the following result (Theorem 6.2)
in this direction.

24
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An element y ELoo is said to be eventually constant, provided that there
exists a set Ty such that jL(Ty ) < 00, and yet) = const. for t tj Ty •

In the following theorem we shall assume, in addition, that (T,E,jL) is
a-finite.

THEOREM 6.2. Let M be as in Theorem 6.1, and let Xj*, ... ,xn* EL j *. !ffor
each i = 1, ,n, the representer for Xj * is eventually constant, then
(Lj,M,{xj*, ,xn*}) has property SAIN.

Proof If jL(T) < 00, then M = Lj, and the result is trivially true. Thus, we
can assume jL(T) = 00. Let Yj ELoo denote the representer for Xj* (i = 1, .. .,n),
and let Ti be a set such that Yi(t) = ai for all t f/= Ti (i = 1, .. .,n). Let x ELI
and e > 0. We shall construct ayE M such that Ilx - yll < e, Xj*(Y) = Xi*(X)
(i = 1, .. .,n), and Ilyll < Ilxll. Using the a-finiteness of (T,E,jL), we can choose
a set To so that

jL(TO ~ yT j) >0,

and IT~To Ixi djL < e/2.

(Actually, the a-finiteness was only used to assert

jL(To ~ YTi) > 0.)

Define y as follows:

where

yet) = (:(t)

x(t) +°

if t f/= To,
n

if t E U Tj,
1

n
if t E To ,.., U Tj ,

j

ThenYE M,

Ilx - yll = JTo~ ~ Ti /01 djL +JT~To Ixi djL < JT~To Ixi djL +JT-To Ixi djL < e,
1

< J Ixi djL +J Ixi djL = IIXII,
To T~To
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and, for each i = 1, .. .,n,

= JT XYi dfL = x/ex).

This completes the proof.

An element (tJ, t2"") E 100 is eventually constant if there is an index N such
that tN = gN+l = ....

COROLLARY 6.2. Let M be the subspace of /[ consisting ofthe elements having
only finitely many nonzero components, and let x1*' ..., xn* E l[ * = 100 , If each
x;* is eventually constant, then (lJ, M, {XI *, . .. ,xn*}) has property SA/N.
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